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AN ANALYTICAL STUDY OF THE MAGNETIC FIELD ENCOUNTERED BY
ARTTFICIAL EARTH SATELLITES IN CIRCULAR ORBITS

By Ward F. Hodge and W. Thomas Blackshear
SUMMARY

Analytical procedures for determining the magnetic field along the satellite
orbit for any day in the year are developed on both an average and an instantane-
ous time basis. These methods are of interest in evaluating magnetic attitude-
control schemes since the information they provide determines the magnitude and
direction of the magnetic torque exerted on the satellite by the interaction of
an onboard magnet with the earth's magnetic field.

The equations and methods presented are considered adequate for applications
requiring attitude control within a few degrees. To illustrate typical results,
plots of the average and instantaneous magnetic fields calculated from the equa-
tions given are presented for seven orbital inclinations ranging from 0° to 90o
at orbital altitudes of 100, 300, and 500 nautical miles. These results show
that the regression of the nodes of the satellite orbit has an effect that cannot
be neglected.

INTRODUCTION

The achievement of artificial earth satellites has stimulated considerable
interest in using the magnetic field of the earth for scientific purposes.
Accordingly, the subject of satellite attitude control utilizing the interaction
of onboard magnetic devices with the earth's magnetic field has continued to
receive attention. The torque generated in this manner can be used to control
the attitude of both oriented satellites and those which are spin stabilized.

For oriented satellites where any initial spin rate has been reduced to a
negligible level, attitude control is possible by selective alinement of the
satellite's magnetic axis with respect to the local direction of the earth's
magnetic field. Several attitude-control systems based on this type of alinement
are described in references 1 to 4. In the spin stabilized case, gyroscopic
action will produce a change in attitude by causing the spin axis of the satel-
lite to precess. (See refs. 5 and 6.) However, in either case, the attitude
change for a given strength of the onboard magnet will be determined by the local
intensity and direction of the earth's magnetic field along the orbital path.
Analysis of magnetic attitude control therefore depends largely upon the magnitude
and direction of the magnetic field experienced by the satellite in its orbit.



Another relevant consideration associated with magnetic attitude control
concerns the variation of the satellite attitude with time. There are basically
two cases to consider, the instantaneous attitude as a continuous function of
time and the average attitude over some specified time interval. For a given
application, the requirements of the control scheme being considered will deter-
mine which type of magnetic information is needed and the choice of coordinate
system for describing the attitude motion. For these reasons, knowledge of both
the instantaneous and the average magnetic field experienced by the satellite
expressed in different coordinate systems is of interest.

Analytical procedures for determining both the instantaneous and the average
magnetic field experienced by the satellite during any day in the year are devel-
oped and presented in this report. One procedure is a means of relating the time
history of the instantaneous field over any day in the year with that for the
first day. The other is a procedure for determining the average field for any
day in the year. An analysis of the information obtained by these methods was
made for test cases representing seven orbital inclinations at three orbital alti-
tudes. The results of these calculations are presented on graphs in the report
since this information should be useful in evaluating magnetic attitude-control
schemes. To avoild involved calculations which must be properly referred to a
specified epoch, only circular orbits subject to the assumptions noted in the text

were considered.

The material contained in this report represents an extension of a study
originally initiated to determine the feasibility of using a magnetic precession
technique to maintain the -attitude of a spinning satellite so the average daily
direction of its spin axis remains toward the sun as the earth proceeds along its

orbit about the sun. (See ref. 6.)
SYMBOLS

Rationalized mks units were generally used where applicable in the study.
Exceptions occur where English and unrationalized mks units were used for con-
venience. Bars placed over symbols denote vectors whose magnitudes are indicated
by omitting the bars. Symbols used to represent portions of equations are defined
where they occur in the text and are not included in the following list of

symbols.

a equatorial radius of earth, meters

B magnetic field strength, webers/meterc
8 unit vector

H magnetic field intensity, amp/meter

h altitude, meters or nautical miles

i orbital inclination, deg



K I

H1

X,Y,Z

X,¥,2

Ho

Hr

E,n,6

¢:Q:W

e

torque, Newton-meter or pound-foot
magnetic moment of earth, weber-meter

position vector defining radius from center of earth to satellite,
meters

mean radius of earth, meters

time interval, mean solar days
instantaneous time, min
potential of magnetic dipole, Webers/meter

difference between longitude of satellite and longitude of ascending
node, deg

ecliptic rectangular coordinates

geocentric rectangular coordinates

colatitude in geocentric polar coordinates, deg
angle between B and the Z-axis, radians

angle between B and the {-axis, radians

angular position of satellite in its orbital plane, deg
longitude in geocentric polar coordinates, deg
longitude of ascending node of satellite orbit, deg
angle between - and z-axes, deg

permeability of free space, webers/amp—meter
relative permeability, dimensionless

longitude in geomagnetic polar coordinates, deg
geomagnetic rectangular coordinates

colatitude in geomagnetic polar coordinates, deg

Euler angles (see fig. 3), deg

angular rate of earth about sun, radians/unit time

regression rate of nodes of satellite orbit, radians/unit time



w axial rotation rate of earth, radians/unit time

We icircular velocity at orbital altitude, radians/unit time

Subscripts:

A average or mean value

I inertial

m,n indices for integers

0 initial value

r,8,v quantities along geomagnetlc polar coordinates

5 satellite

X,Y,%7 guantities along X,Y,Z coordinate axes

X,¥,2 quantities along x,y,z coordinate axes

£,1,€ quantities along ¢&,n,§{ coordinate axes
PROCEDURE

The equations describing the analytical procedures used in the study are
developed in this section of the report. In order to derive such eguations, it
is first necessary to choose a suitable mathematical description of the earth's
magnetic field. The spherical harmonic representation outlined in appendix A is
generally considered the most accurate one available. However, the equations
developed herein were based on the dipole field obtained when only the first three
terms of the spherical harmonic representation are retained. (See appendix A.)
This approximation gives sufficient accuracy for the purposes of the study.

The development of these procedures was essentially accomplished in two
steps. First, the expressions for the instantaneous field were obtained by
establishing a correspondence between the satellite's position and the dipole
field. Then by making a suitable choice of variables, these equations were inte-
grated in closed form to obtain the expressions for the average field. Both sets
of equations are given in two coordinate systems of interest for purposes of
magnetic attitude control.

Assumptions

In addition to assuming a dipole representation for the earth's magnetic
field, the study was based on the following general assumptions:



(1) The satellite remains at constant altitude in circular orbit about the
earth.

(2) The orbit of the earth about the sun is also treated as circular.

(3) All perturbations except the regression of the nodes of the satellite
orbit are considered negligible in comparison with the inaccuracy introduced by
dipole representation of the earth's magnetic field.

It should be mentioned that these assumptions are made without regard to
satellite geometry and may not be very suitable for configurations which are
noticeably influenced by effects such as those due to gravity gradient and solar
radiation pressure. At the altitudes considered, the most significant of the
perturbations which are neglected in making these assumptions is aerodynamic drag
which may be ignored since it only tends to make the orbit more circular.

Correlation of Satellite Position With Magnetic Field Along Its Orbit

To specify the magnetic field encountered by a satellite, it is necessary to
establish a correspondence between its position and the field intensity vector
along the orbital path. Defining a Cartesian coordinate system and a set of
spherical polar coordinates as shown in figure 1, the satellite position in a
circular orbit can be specified as a function of time for a given choice of r
and i by the following relations:

e:a)ct+eo

AN =kt + Ng
where

k=-(w+ Q)
in which

3"

=10 cos i T

gives the regression of the nodes of the satellite orbit in degrees per day for
orbits of low eccentricity. (See ref. 7.)

Geomagnetic coordinates.- The dipole representing the earth's magnetic field
is fixed with respect to the earth and for this reason it is convenient to con-
sider the satellite's position in coordinates rotating with the earth. This
choice permits the x- and t-axes to be taken coincident along the line of inter-
section of the geomagnetic and geocentric equatorial planes which is located
about 21° east of Greenwich as indicated in figure 2.

The rectangular components of the position vector T in the two coordinate
systems are:



=1}

= ég(r sin @ cos v) + &p(r sin © sin v) + @g(r cos ®)

and

T

€x(r sin B cos A) + &y(r sin B sin A) + &4(r cos B)

where the corresponding relations between the unit vectors

A N
eg = €x

A - N N .

en = ey COS Yy + €z sin p
A A . A

S = -8y sin p + 8, cos p

are obtained from figure 2 by means of trigonometry. Therefore, the position
vector T 1in the two coordinate systems is related by the following matrix

equation:

sin ® cos v 1 0 0 sin B cos A
sin © sin v = 0 cos p sin p sin B sin A
cos © O -sin yu cos pu cos B

By using this equation, trigonometric identities, and the following rela-
tionships obtained from figure 1,

A A+ W

tan W tan 6 cos i

cos B = sin 6 sin 1

cos ©
cos W

sin B

I

the geomagnetic components of the earth's dipole field given in appendix A
(egs. (A3)) can be expressed in the following form:

~
Eg =—1¢1—<a cos i sin 1 -g‘-b sinp)
21-5 2
B, = - zﬁL-G cos 2u sin i + 1 g sin 2p> (1)
n 21-3 )4-
B =21\—4—<c sin 2p sin i +ld sin2u+£e)
ord 2 >




where

a=Ccos AN-D sin A

b = E sin 2\ + F cos 2A

¢ =Csin A+ D cos A

d =E cos 2\ - F sin 2\ - e

2 - 3 sin®i(1l - cos 20)

o
Il

in which
C = sin 26
D = cos i(1 - cos 28)
E = sin?i + (1 + cos®i)cos 20
F = 2C cos 1

Thus, equations (1) give the geomagnetic rectangular components of the mag-
netic field experienced by the satellite as functions of its position with respect
to the rotating earth. The components of the magnetic field in x,y,z coordi-
nates differ from those given by equations (1) only by a rotation through the
constant angle u (as indicated in egs. (Bl)). For this reason, the overall
characteristics of the field will be the same for both coordinate systems and
only the geomagnetic equations are discussed.

Ecliptic coordinates.- For applications where it is necessary to account for
the earth's motion about the sun, it is advantageous to determine the field inten-
sity vector in terms of rotating ecliptic coordinates. The ecliptic components
of B as indicated in figure 3 can be obtained conveniently by means of the
Fuler angle transformation given in appendix B. The resulting equations
(eqs. (B2b)) can be expressed in the following form by substituting equations (1)
and using trigonometric identities:

— 3M N
By = - ©—|cos u sin i(P cos § - Q sin @ cos a)
2r
L sin (R cos ¢ + S sin @ cos a) - K‘]
- E p, X
= 3M . . .
By = - =—<|cos p sin i(P sin § + Q cos § cos a)
er (2)
L sin (R sin ¢ - S ¢ ) - K
- E 35 sin - cOs cos ) - Y]
= M~ . | .
By = - =——|sin (P cos p sin i + = Q sin p) - K
z 2r> 2 él)



where

P=Ccos(AN+ V) - D sin(A + ¥)
Q = C sin(A + ¥) + D cos(A + ¥)

R =F sin(2\ + ¥) + F cos(2\ + V)

S = E cos(2\ + ¥) - F sin(2n + V)
Ky = % e(al2 sin p + 2873 cos p) + alB(C sin u sin i)
1 . . e s
Ky = z e(a22 sin p + 2apz cos p) + a23(c sin u sin i)
1 . . . .
Ky = g e(a52 sin p + 2a53 cos u> + a55(c sin p sin 1)

in which the a, ,, are elements of the Euler angle transformation matrix given
J

in appendix B. Equations (2) give the components of B experienced by the satel-
lite as functions of its position in an ecliptic coordinate system that rotates
about the Z-axis once a year relative to the sun.

Method for Obtaining the Average Magnetic Field

The instantaneous time histories of B along the orbital path of the satel-
lite in the geomagnetic and ecliptic coordinate systems are given by equations (1)
and (2). These expressions are functions of time and may be integrated in the
following manner to obtain the average magnetic field experienced by the satellite
during a given interval of time:

i
By =%- f 8,B(t)dt
0

where the € B(t) represents the vector components of B.

Geomagnetic coordinates.- Since all the time-dependent angles involved in
equations (1) and (2) except ¢ complete at least one cycle in a period nearly
equal to that of the earth's axial rotation, it is convenient to choose a time
period of one mean solar day as the integration interval. Integrating equa-
tions (1) on this basis gives the following expressions for the average geomag-
netic components of the field over 1 day:




where

aA—

i

ol I

€A

+

+

|

1) (1 + cos 1)2

~
EEA = - 3M5 (aA cos p sin 1 - %‘bA sin p)
2Tr

= 3M A | )
BT]A = - 2Tr5(cA cos 2u sin i + n d, sin 21.1) (3)
= 3M < . L., 1 . 2 1 )
B = cp sin 2p sin 1 + = d, sin“p + % e

A A A A

¢ 2Tr e > v,

1/1 + cos 1
1/ +t cos 1 - - A
5 — [cos(G A) cos(7\o + Oﬂ

1l - cos i 2 cos 1
= T 2 —lecos(G + A) - cos(Ay - A - 2= —{cos G - cos A
Q‘Dc’k[( ) (O Oﬂ k < O)

Ay cos(2G - A) ~ cos(2Ng + AOiJ

(1 - cos 1)° sin®i

1/(1 + cos 1)2

cos(2G + A) - cos (2?\0 - AOZ‘ + (cos 2G - cos 27\0)

2<wc - k)
iéizigiii[gin(c - A) + sin(ng + Aoi}

20e - k

1l - cos iEin(G + A) + Sil’l(?\o - Aoﬂ - g.iis—l_(sin G + sin 7\0)

> g(wc — kj sin(2G - A) + sin(exo + AOiJ

2

O i(sin 2G + sin 2xo) + 2e,

N2 )
(1 "ccoskl)) Ein(EG + A) + sin(27\o - Aoﬂ + ——Sl;

2 - 3 sin®i) + é—%%gfi(sin A - sin Aoi]
c



in which

(]
il
Q
=
1
>

o

=
]

g
H
+
>

O

Ecliptic coordinates.- The transformation to ecliptic coordinates introduces
additional time-dependent quantities since two of the three Fuler angles are

given by:

]

¥ = wt +1|fo

g = ¢t + o

This situation poses no difficulty and equations (2) can be integrated in closed
form in the same manner as equations (1) by redefining two of the time-dependent
angles in the following form:

AN =A+¥ =k't + 7y’
and
AT =2+ ¢ =kt + A"

where

k' = =0

k' = (20 + w)
and

Aot =No + Vo

No'' = 2N * ¥

This step reduces the number of time-dependent angles involved in integrating
any portion of equations (2) to a maximum of three. However, the order can be
reduced from three to two by holding ¢ constant which changes by less than 1°
during the l-day integration interval. Comparisons with results obtained when the
variation of ¢ is included in the integration shows that no noticeable error is
incurred by treating ¢ as a constant. The integration of equations (2) with ¢
constant yields the following expressions for the l-day averages of the ecliptic
components of the field:

10



N

Byy = - M [cos u sin i(PA cos § - Q sin @ cos on)
orrd

R .
2 sin p(RA cos P + S, sin @ cos a) - KXA]

—_ 3M
2‘1‘1‘3

Eos p sin i(PA sin § + Q cos @ cos o,) (4)

-]2: sin H(RA sin ¢ - S cos @ cos on) - KYA;]

§ZA=__%Sina(PA cosusini+-]2:QA sinp)—Kzﬂ

27
where %
o o1 (1 + cos i)E:os(G - A) - cos(7\o + Ao—)]
A 2 2, - O
c
. (1 - cos i)[cos(G +A) - cos(?xo - AOB . 2 cos i(cos G - cos Ag)
e + 0 f
o o1 (1 + cos 1)[sin(G - A) + sin(Ag + Ag)]
* T2 200 - ©
(1 - cos i)[sin(G +A) + sin(?\o - Ao):] 2 cos i(sin G + sin 7\0)
+ +
2o + Q Q
s\ 2
P (1 + cos 1)“|cos(2G - A) - cos(27\o + Ao)]
A 2 2w, - 20 -

(1 - cos i)2 cos(2G + A) - cos(27\o - AO):I 2 singi(cos 2G - cos 27\0)

2We + 20 + w 20 + w

11



(1 + cos 1)2[sin(2G - A) + sin(QKO + Aoﬂ
aDc_Q\Q"'CD

1
Sp = - >

(1 - cos 1)%[sin(26 + &) + sin(2ho - A0)] 2 sin®i(sin 26 + sin 2Ay)

2w, + 20 + 20 + W

ey cos u sin a sin @ + % sin p singi(Kl cos § - K5 cos a sin ¢)

W=

Kxp =
+ (CA sin p sin i)sin o sin @

Kyp = % ey cos p sin o cos § + % sin p sinzi(Kl sin § + K, cos i cos ¢)

- (QA sin p sin i)sin a cos §

Kyp = % ey COs U cos a + % sin u sinei(Kz sin a) + (QA sin u sin i)cos a
1 1
Ky = {cos A - cos A -
1 ( O)(Qﬂ)c + W abc - w)
. . 1 1
Ko = (s8in A - sin A +
2 ( o><2wc +to 2w, - w)

Note that the third terms in P, and Q vanish when § is zero.

Reduced form of equations.- Reasonably good results can be obtained by
deleting the angle A and its initial value Ag from equations (3) and (4).

When this approximation is made, these equations reduce to

Bea -

M
5{?1 cos u sin i(cos G - cos ko) - % Co sin u(cos 2G - cos 2%08 (3a)
2Ir

(Equations continued on next page)
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jos}

nA T T

2Tr

Cq cos 2u sin i(sin G + sin ko)

- % sin Eu{?g(sin 26 + sin 2n) + (2 - 3 singi)%q

—_— M

I

BCA

2Tr3

C1 sin 2u sin i(sin G + sin Ko) -

1

n [+

+(2-3 singi)%] + 3(2 - 3 sindi)T

and

where

in which

Bxa

Bya

Co

M
oTrd

2Tr3

2Tr

cos p sin i(cos G

M (Wg sin o

W3 cos a)

1 cos @ + (Wg cos a + Wz sin a)sin é]

3M Eﬁ_sin ¢ - (W2 cos o + Wz sin a)cos ]

sin2u[§2(sin 2G + sin 2\y)

\

J

cos XO) + Cu(cos 2G - cos 2%0)

cos u sin i(sin G + sin ko) + Cu(sin 2G + sin 2%0)

sin p sin i(sin G + sin %O) +

N[

l<l.+cosi 1 - cos i

2we +k

2
1{(1 + cos 1)

&Dc-k k

(1 - cos i)2

2 cos i)

sin

2

i

2 E(mc + ij

2(we - k)

k

(2 - 3 sin21)T cos p

(ka)
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1/l + cos i 1l -~ cos i 2 cos 1
CB::— + +
2 2w - O 2, + O Q
-
1{(1 - cos 1)% (1 +cos i) | 2sin?s

il

% =3 2(we + Q) +o 2(we - Q) -0 20 +o

Note that the third term in C3 vanishes when  is zero. Equations (3a)

and (La) shorten the calculations considerably and give results that are within a
few percent of those given by the original equations. The results given by equa-
tions (3) and (3a) always agreed within 4 percent, and those given by equations (4)
and (4a) within 1 percent for the cases considered in this study.

ANALYSIS

An analysis of the average and instantaneous magnetic fields given by equa-
tions (1) to (4) is made for test cases covering satellite lifetimes up to 2 years. |
These cases were calculated for seven orbital ineclinations ranging from 0° to 90°
at orbital altitudes of 100, 300, and 500 nautical miles. The use of equations (1)
to (4) in devising analytical procedures for obtaining the average and instanta-
neous magnetic fields encountered by the satellite any day in the year is described
in detail. To facilitate the discussion, the results for the geomagnetic and
ecliptic coordinate systems are treated separately. Finally, this information is
discussed in terms of torque to indicate its use for attitude-control purposes.

Geomagnetic System

The magnitude of the instantaneous field intensity vector in these coordi-
nates is

_ 2 2 2
B = VBg + By© + Bp
and the angle it mekes with the {-axis (see fig. 2) is

2
B
7 = tan~t £

B

This information is presented in figure 4 for all seven orbital inclinations at
each of the three altitudes. These curves represent the instantaneous time
histories of B and 7 for the first day of the satellite lifetime which is
assumed to start with the initial values of 6 and A set to zero. All the
curves exhibit a sinusoid due to the satellite crossing the geomagnetic equator
twice per orbit superimposed upon one due to the daily rotation of the dipole
field about the earth's axis of rotation as would be expected.

1k




Comparisons of the results for different days in the year indicate that the
time histories of B and 7y for any day are contained in the corresponding ones
for the first day, and that the curves for the two days differ mainly by their
starting times which are determined by 6¢p and Ag. By locating the time on the

curve for 7y plotted against t for a given day when A corresponds to Ag for

the first day, then moving from this point to the nearest time when 6 1is zero it
was found that the two curves always coincide within the accuracy of the plots.
Tdentical results were obtained for the corresponding B curves. Since A
changes by a small amount during the time involved, the error due to moving away
from the correct location of A to bring 6 into phase is negligible and could
not be detected in the results.

To illustrate this procedure, a portion of the time histories of y for the
first day and a test day beginning 100 days later are plotted in figure 5 for an
orbital inclination of 30° at an altitude of 300 nautical miles. The figure shows
the initial portion of the curve for ¢y plotted against +t for the first day and
the region of the curve for the test day where A corresponds to Ag for the

first day. The point where this occurs is located about 280 minutes after the
beginning of the test day as indicated in figure 5(b). By moving along the curve
a distance At from A to the nearest time when © 1s zero which occurs about
306 minutes after the test day begins, it can be seen that the region of the curve
starting at this point coincides with the initial portion of the curve for the
first day.

Thus, the time histories of B and v presented for one day in figure 4
can be used for any day in the year. These results indicate that Q, which
causes KO to be different from zero at the start of any given day, continuously

displaces the time histories of B and ¥ in time at a rate equal to that of the
regression of the nodes of the satellite orbit.

In a similar fashion, the average magnetic field experienced by the satellite
may be specified in terms of its magnitude and direction which are given by:

2

2 2
Ba VBE-A + BT]A + BQA

and

2 2
-1 \IBE-A + BT]A

BCA

75 = tan

where 7y, 1s the angle between EA and the {-axis as shown in figure 6.

The calculations made indicate that By and y, oscillate with small

changes in amplitude at a frequency equal to the regression rate of the nodes of
the satellite orbit. For the three altitudes considered, Bp and 7y, and their

variations in amplitude change with the inclination of the satellite orbit. Since

15



both quantities are essentially sinusoids, their mean values for each inclination
may be plotted as in figure T to 1llustrate generally the variation of By and

yp -with i.

These curves show that Bp decreases to zero in the vieinity of 55° and
then increases to half its maximum value at 90° for each of the three altitudes.
The corresponding curves for vy, indicate that B, reverses direction at an

inclination near 55° such that it then points below instead of above the geomag-
netic equator. The region between 45° and 60° is shown dashed on the plot since
more dats than were calculated would be needed to define this portion of the
curve. Only one curve for 7yp 1is presented since the overall geometric shape of
the dipole field does not change enough over the range of the three altitudes used
to produce any appreciable variation in the three curves.

Within the accuracy to which By and ¢y, were calculated, their amplitude

variations are too small to plot except for orbital inclinations near 55° where
the combined effect of both oscillations is maximum. This behavior is of minor
importance since By 1is much too small in this region to be effective in changing

the attitude of the satellite. Thus, the average field intensity vector encoun-
tered by the satellite is essentilly fixed in magnitude and direction with respect
to rotating geomagnetic coordinates. When viewed in inertial coordinates, By

would therefore appear to rotate once a day relative to the QI-axis in a nearly

circular path having its center on the zy-axis as shown in figure 6.

Ecliptic System

The instantaneous time histories of B in ecliptic coordinates were not
used in this study and no results are presented for this case. For applications
where the instantaneous time histories of B in ecliptic coordinates are of
interest, equations (2) can be used to obtain the desired information. The simple
procedure devised for relating the time histories of B at different days in the
year breaks down in the ecliptic system because three instead of two initial
angles must be correlated in time. Although it might be possible to extend the
procedure to handle this case, it appears the resulting process would be too cum-

bersome to be very useful.

By following the approach used in the preceding section, the corresponding
expressions for the average magnitude and direction of the field intensity vector

in rotating ecliptic coordinates are

By = \/}3XA2 + Byp® + Byy2
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and

2 2
VBXQ + By
= tan_l YA

Ty =
A Boa,
where I'p 1is the angle between ﬁA and the Z-axis as shown in figure 8.

The calculations of these quantities show that Bp 1is also essentially

constant when determined in ecliptic coordinates. Therefore, the variation of
By with 1 may be plotted in the same manner as was done for the geomagnetic

system. This information is presented in figure 9 which shows that Bp decreases

with i from its maximum at O° to half this value at 900. A comparison of fig-
ures 7 and 9 show that Bp has the same values in both coordinate systems for

equatorial and polar orbits, but differs considerably for all inclinations between
0° and 90° because the time dependency to be integrated is not the same in both
coordinate systems except for these two special cases where the effect of the
difference in time dependency vanishes.

The angular position of ﬁA in ecliptic coordinates does not exhibit the

nearly constant behavior with respect to time it has when defined in geomagnetic
coordinates. The plots of TI'y against ¢ presented in figure 10 indicate Ty

oscillates with a periocd equal to En/Q. Thus, I'py o©Oscillates with the same
frequency as 7p, but with much larger variations in amplitude.

Figure 10 shows that ﬁA also reverses direction at orbital inclinations

near 55° when expressed in ecliptic coordinates. Curves for the 0° and 90°
inclinations are not presented in figure 10 since (, and hence the oscillation,
vanlishes in each case. The values of I'p for these cases are essentially con-

stant at all three altitudes and have the same approximate values of 0.409 and
2.732 radians for inclinations of 0° and 900, respectively. These values of T'p

are equal to a and a + w; thus, By 1s oriented parallel to the earth's spin

axis and points along the positive z-axis for the O° inclination and in the nega-
tive direction for the 90° case.

In addition to the larger amplitude variations, EA rotates relative to
rotating ecliptic coordinates. Plots of the resultant of By, and By, (not

presented) show that thls quantity, which is the numerator in the expression for
I'p, rotates once a year in the X,Y plane since ¢ determines its angular posi-
tion as shown in figure 8. Referring to the sketch in figure 8, it is evident
that Bp makes one revolution per year about the Z-axis while oscillating back

and forth in the plane passing through the Z-axis perpendicular to the line of
nodes of the_earth's orbit about the sun. These results indicate that the plane
containing B, has a fixed orientation in inertial space since the X,Y,Z coor-

dinate system which rotates at the rate ¢ completes one revolution a year. For
the special cases where § 1is zero (i = 0° or 90°), TI'y is constant and By has
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a fixed orientation paraliel to the earth's spin axis as discussed in the pre-
ceding paragraph.

Attitude Control

As indicated in the introduction, the interaction of the magnetic field of
the earth with that of an onboard magnet will produce a resultant torque on the
satellite that can be used to control its attitude. This torque is given by:

Tp = Hs X By
where ﬁs is the magnetic moment vector of the onboard magnet. Although pre-

sented in terms of the average field, the following discussion of attitude con-
trol applies to the instantaneous field as well.

For nonspinning satellites, EA will act so as to aline ﬁg with EA. The

resulting motion is to a first approximation that of a damped simple harmonic
oscillator which is discussed at length in reference 2. Essentially what happens
is that Mg will track Bp reasonably well after the oscillatory motion damps

out. The relative strength of fA is the dominant factor which determines the
duration of the oscillatory motion and how closely the satellite will track the
local direction of Bp along its orbital path. Tracking accuracies of the order
of 2° or less for the Transit and INJUN satellites are indicated in reference 2.

The magnetic torque will cause the spin axis to precess like a gyroscope in
the case of spinning satellites. If the magnetic moment vector of the onboard
magnet is alined with the spin axis, Lp will cause Mg to precess in a conical
path about EA as indicated in figure 11. As the spin axis precesses, fA will
describe a plane perpendicular to EA in accordance with the cross-product rela-
tionship between the three vectors. It is evident that the manner in which Bp

moves relative to the coordinate system will be exhibited in the precessional
motion of the spin axis. Thus, it can be seen that the magnitude and direction
of the magnetic field along the satellite orbit determines the magnetic attitude-
control possibilities for both oriented and spin-stabilized satellites.

A passive magnetic precession technique to maintain the average daily atti-
tude of the spin axis toward the sun as the earth proceeds along its orbit about
the sun was considered for the 150-foot space station described in reference 6.
By referring to figure 11, which also illustrates the situation for this applica-
tion, the desired motion is to precess_the spin axis in the X,Y plane at the
rate ¢ such that the angle between Mg and the X-axis remains as small as pos-

sible. It is evident from figure 11 that the optimum path of ﬁs lies in the
plane containing EA. If the angle between ﬁg and ﬁA is 900, ﬁs will pre-
cess in a sinusoidal path of amplitude Iy with respect to the X,Y plane. Thus,
ﬁs cannot be held any closer to the X,Y plane than 1I'j. The minimum value of
I’y occurs when the orbital inclination is zero; thus, an equatorial orbit repre-
sents the optimum case. Unfortunately, the minimum value of Tp is equal to «
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(about 23.45°) and is too large to satisfy the requirements of this particular
application.

In regard to the onboard magnet, either permanent or electromagnets can be
used. The power and weight requirements for electromagnets may be calculated by
the method used in reference 1. TFor permanent magnets, the magnet weight required
to produce a given value of Mg can be calculated by using the procedure given
in reference 4. Their calculations indicate that currently available magnet mate-
“rials will provide about 0.001 pound-foot of torque per pound of magnet at an
altitude of 300 nautical miles.

CONCLUSIONS

The results of an analytical study of the magnetic field along circular
orbits indicate the following conclusions:

1. The regression of the nodes of the satellite orbit has a noticeable effect
on both the average and instantaneous magnetic fields experienced by a satellite
in circular orbit which cannot be neglected.

2. The regression of the nodes causes the time histories of the instantaneous
magnetic field vector for any 2 days in the year to differ by a displacement in
time that includes smaller effects due to other differences in the initial condi-
tions for each day.

3. The average magnetic field vector, determined on a daily basis by integra-
tion in closed form, is nearly constant in magnitude and direction relative to
rotating geocentric coordinates; and in ecliptic coordinates the average field
vector oscillates with constant magnitude at the same rate as the regression of
the nodes in a plane fixed in inertial space.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 30, 1963.

19



APPENDIX A
THE EARTH'S MAGNETIC FIELD

Spherical Harmonic Representation

The magnetic field of the earth may be considered representable as a conserv-
ative field of force in which a force vector referred to as the field intensity H
exists at every point in the field. Since the current densities present on or
near the earth are extremely small, its magnetic field may also be assumed to be
irrotational. Under these conditions the field may be specified by a scalar
potential function V that satisfies Laplace's equation

VEV = 0
where the field intensity is given by the gradient of V
H=-W

If the field due to external sources is neglected, the general solution to
Laplace's equation for a spherical boundary at r = a reduces to

foe) n
n+l
= a n cos B ) (g cos mA + h 31n mA>
n=1 m=0

where the ancos B are multiples of associated Legendre functions and the gnm

and hnm are the experimentally determined Gaussian coefficients. (See ref. 8.)

Dipole Representation

For applications where less accuracy is needed, a reasonably good approxima-
tion of the earth's magnetic field can be obtained by retaining only the first
three of the Gaussian coefficients. When this approximation is made, the
preceding spherical harmonic expansion of the earth's magnetic field gives the
potential due to the first coefficient glo as

3
Vlo = glo %5 cos B

which is exactly the potential of a simple dipole located at the center of the
earth with its magnetic moment vector
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directed along the earth's axis of rotation. Similarly, the second and third
coefficients gll and hll correspond to simple dipoles which are perpendicular

to each other and lie at the center of the easrth in the plane of the equator.  _
The geographic orientation of the three orthogonal dipoles and their resultant H
is illustrated in figure 12. The resultant field obtained in this manner is fre-
quently used in dipole representations of the earth's magnetic field and is the
same as that of a single dipole whose potential is given by

5
V=EHk 95 cos W
r

where

H= \[@0>2 + (gll)g + (hll)2

This resultant dipole is also located at the center of the earth as would be
expected, but is inclined at a fixed angle pu to the axis of rotation as shown
in figure 12. 1It_should be noted that the geomagnetic polar axis, defined as the
line containing H, does not coincide with the familiar terrestrial magnetic poles
which are also indicated on the drawing in figure 12. The magnetic moment vector
of the resultant dipole in unrationalized mks units is given by

M = Had
which also lies along the geomagnetic polar axis. Depending upon which determina-
tions of the Gaussian coefficients and the earth's equatorial radius are used,

the magnitudes of M and pu will vary slightly. The values used in this study
are given in table I and correspond to those contained in reference 9.

TABLE I.- PHYSICAL CONSTANTS

Quantity Symbol Value
Permeability of free space Ko b x 1077 weber/amp—meter
Megnetic moment of earth¥ M 8.1 x 1015 weber-meter
Mean radius of earth rp 6.3712213 X 106 meters
Equatorial radius of earth a 6.3783880 x 10 meters
Inclination of earth's spin axis o 23,450

to ecliptic polar axis
Angle between {- and z-axis U 11.50°
Axial rotation rate of earth w 2x radians/day
Average angular rate of earth ¢ 2 radians/day
about sun 365.25

*This value of M is given in unrationalized mks units and must be
divided by pp to convert it to rationalized mks units.
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The remaining step in representing the earth's magnetic field by a dipole is
to define suitable ccordinates for specifying H or its components at any point
in the field. By choosing the geomagnetic polar axis as the prime reference, a
rectangular geomagnetic coordinate system may be defined as shown in figure 2.

In this system, the {-axis is along the prime reference axis with the E- and
n-axes taken to form an orthogonal system. It is.convenient to obtain the com-
ponents of H in terms of geomagnetic spherical polar coordinates which are also
defined in figure 2, and then transform the results to the desired coordinate sys-
tem by means of rotation matrices. (See appendix B.)

The potential of the resultant dipole expressed in vector form is

M.r
V_
2
In polar form, the potential becomes
v=-MXcose (A1)
re . ‘ ‘

where the minus sign arises because of the manner in which © is defined. (See
fig. 2.) ‘

By using the relation
B = Hr“-oﬁ-

in which the relative permeability . may be taken as unity for air, the field
strength can be expressed as

B = -W

where the unrationalized value of M given in table I is used in equation (Al)
to eliminate the permeability of free space uj, from both sides of the equation.

Taking the gradient of V
B = -W

= _ o [-av) , Bof-av & (-
B er<5r > ¥ I'<BD > * T ein e\dv >

pug A N A
B = erBr + e®B(9 + e.VBv

gives the polar components of the field as
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A 2M cos @W

§r -€r
-,

By = -8 M sin © (A2)

)

v =0 J

from which the components of B along the £E,m,{ axes are:

oW

=]

By = (Er sin & + §® cos @)cos v

n = (-]'3-1. sin © + §® cos @)sin v

o)
1

]

Be ﬁr cos@-%sin@

Upon substituting equations (A2) in these expressions, the rectangular geomagnetic
components of B become

\
]_S-g =—3—Mcos®sin®cosv
3
T
§n = - 2 cos ® sin © sin v> (A3)
r
_g = -M—(l -3 00s2@)
r3 )
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APPENDIX B
COORDINATE TRANSFORMATIONS

Rotating Coordinates

Equations (1) correlate the satellite position with the geomagnetic rectan-
gular components of B given by equations (A3) in terms of rotating coordinates
fixed in the earth. Since the ¢t,n,{ and x,y,2 coordinate systems differ
only by a rotation through the angle p as shown in figure 2, the geocentric
rectangular components of B in rotating coordinates may be obtained from equa-
tions (1) by means of the matrix relationship:

gﬂ

1 0 0] Bg

O cosp -sinp [ By (B1)

ol

i

0 sinyp cos BC

To obtain the rotating ecliptic components of B, it is easiest to employ
Fuler angles such as those defined in figure 3. The product of the matrices
corresponding to successive rotations through the three Euler angles ¢,a,w is
the matrix (denoted by é)

811 ®2 213
A= ax ap ap3
831 az2 833
whose elements are

ajy = cos ¥ cos § - cos o sin @ sin ¥
ajp = -(sin ¥ cos § + cos « sin @ cos ¥)
ayz = sin a sin @

an] = cos ¥ sin @ + cos a cos @ sin ¥
aps = -(sin ¥ sin @ - cos a cos @ cos ¥)
apz = -sin a cos ¢
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az] = sin o sin V¥
azp = sin a cos ¥
8.55 = COS

In matrix notation the desired transformation is:

;ﬁ

By ) = A(By (B2a)
Bz, Bz
which may be written in scalar equation form as:
- - _ _ _ _ N
By = allBg + alE(Bn cos p - Bg sin p) + alB(Bﬂ sin pu + Bg cos u)
ﬁ& = a2l§é + a22(§ﬁ cos W - ﬁé sin u) + aQB(Eﬁ sin p + Et cos u) (B2b)
EZ = aBlﬁé + a52(§h cos g - ﬁt sin H) + a55(§ﬁ sin p + ﬁt cos u)

J

Inertial Coordinates

Simple rotation matrices can also be used to obtain the magnetic field
encountered by the satellite in inertial coordinates. Since the ¢,n,{ and
X,¥,2z coordinate systems are fixed with respect to each other, the transforma-
tion of either system to a corresponding inertial system involves only the angu-
lar motion due to the earth's rotation. The displacement ¢ of the x-axis from
some fixed reference such as the autumnal equinox is illustrated in figure 6.
Therefore, the geomagnetic and geocentric inertial components of B are:

EEI cos ¥ =-siny O

Il

sin ¥ cos ¥ O

By 1 0 o 1

and
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EQI cos ¥y =-sin ¢ O ﬁ%

s’

I

vT sin ¥ cos ¥y O f& (BY)

By1 0 0 1/ (B

The inertial ecliptic components of B may be obtained in a similar fashion
by rotating the X,Y,Z coordinate system through the angle ¢ to account for
the motion of the earth about the sun. (See fig. 8.) The resulting transforma-
tion gives:

Byt cos § sin g O\ (By
Byr) = |-sin @ cos ¢ 0O By (B5)
Byr 0 0 1/ 3By
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